

Common Radio Resource Management - CRRM Theory, Architectures, Algorithms

Andreas Pillekeit

ICB, Research Group Systems Modeling
University of Duisburg-Essen
Germany

Outline

- Motivation
- History and Terms
- Theory
- Systematic View
- Architectures
- Algorithms
- Summary

Outline

- Motivation
- History and Terms
- Theory
- Systematic View
- Architectures
- Algorithms
- Summary

Different coexisting Radio Access Technologies

■ **WGAN** - Wireless <u>Global</u> Area Network

 Inmarsat (492 kbit/s), Thuraya (60 - 144 Iridium (10 kbit/s), ÁSTRA2Connect (2 M

■ **WWAN** - Wireless <u>Wide</u> Area Network

 UMTS-HSDPA (14,4 Mbit/s), UMTS-LTE (326 Mbit/s - 1 Gbit/s), GSM-GPRS (171,2 kbit/s), GSM-E-GPRS (473,6 kbit/s - 1 Mbit/s), WiMax (109 Mbit/s - 1 Gbit/s), DVB-H (1

- WLAN Wireless *Local* Area Network
 - 802.11b,n (11 600 Mbit/s), HIPERLAN2
- **WPAN** Wireless *Personal* Area Network
 - Bluetooth 3 (2,2 480 Mbit/s), IrDA (16 DECT (552 kbit/s), WirelessHD (25 Gbit/s) W-USB (480 Mbit/s)

UE in a Changing Environment

CRRM Problem

Set of UE

- QoS demand
- Resource consumption
- Supported RAT/Provider
- Available RAS...

Set of RAS

- QoS offered
- Availabe Resources
- Coverage
- RAT/Provider...

RAS₁

RAS₂

 RAS_k

CRRM Goal

- **Goal:** optimal distribution of service sessions (matching) to available radio access systems
 - Satisfied users, minimal costs
- Possible actions to meet this goal:
 - Handover (intrasystem, intersystem)
 - Adapt offered QoS
 - Change RRM-properties (e.g. allocate additional frequencies)
- Complex task due to dynamics in the system and many influencing factors
 - Properties of wireless system and user equipment

Outline

- Motivation
- History and Terms
- Theory
- Systematic View
- Architectures
- Algorithms
- Summary

Always Best Connected

- Gustafsson and Jonsson (2003)
- ABC-concept defines the goal
 - User centered, task oriented
 - Best available access network/device at any point in time
 - Wired or wireless
- Components
 - Content adaption
 - Profile handling
 - Mobility management
 - AAA support
 - Access selection
 - Access discovery

Cognitive Radio / self-x

- Mitola and Maguire (1999)
- Based on Software Defined Radio (SDR)
- Vision of a complete a.i. network
 - Knowledge base
 - Model based reasoning
 - Observe, learn and plan
 - Interaction -> Chess Game over radio resources
- Self-x (management, configuration, preservation)
- EU-projects: ARAGORN (ISM-band) E³ (WLAN/WWAN)

CRRM – JRRM – MRRM – MXRRM

- EU IST research framework
 - EVEREST, AROMA, AN, E2R...
 - ► Common Radio Resource Management
 - ▶ Joint RRM
 - Multi RRM
 - Multi Standard RRM

Focus on WWAN technologies

- Infrastructure based networks
- WLAN is also considered

Emphasizes multiobjective optimization

- Addition to existing radio resource management
- Subset of cognitive radio approach
- Joint Call Admission Control JCAC
 - Emphasizes admission control and handoffs as a subject to multiobjective optimization

Handover/Handoff Types

- IEEE 802.21: vertical, horizontal handoff
 - Term mostly used in Asia, America
- **3GPP:** intersystem, intrasystem handover
 - Term mostly used in Europe, Africa

Different Terms, one Goal

- CRRM
- JRRM
- MRRM
- MxRRM
- JCAC
- Vertical Handover Control
- Cognitive Radio / self-x
- Always Best Connected!

Outline

- Motivation
- History and Terms
- Theory
- Systematic View
- Architectures
- Algorithms
- Model and Simulation Framework
- Summary

What can CRRM achieve?

- Trunking efficiency gain
- Service assignment gain

Trunking Efficiency Gain (1)

- Agner Krarup Erlang (1917)
 - **M/M/m/m** or M/M/m/0

Trunking Efficiency Gain (2)

Blocking situation in separate system

Trunking Efficiency Gain (3)

No blocking situation in joint system

- Probability distribution of service/arrival times lead to lower blocking probabilities
 - Even for doubled offered traffic at doubled number of channels

Trunking Efficiency Gain (4)

- Example: Call Center Toolkit
 - http://sysmod.icb.uni-due.de/index.php?id=cct

Service Assignment Gain (1)

- Anders **Furuskär** (2002)
- Different systems different capacity for various service types
- Choose the best suitable system for the services
- Leads to a capacity gain additional to trunking gain

Service Assignment Gain (2)

Service Assignment Gain (3)

Capacity surfaces of GSM/EDGE & WCDMA

Service Assignment Gain (4)

Equal service mix allocation

Service Assignment Gain (5)

Service suitability based allocation

Outline

- Motivation
- History and Terms
- Theory
- Systematic View
- Architectures
- Algorithms
- Summary

Common RAT Architecture

Common RAT Architecture

Different CRRM System Boundary Levels

Tasks

Initial RAT

selection

Intersystem

Handover

Intrasystem

Handover

Admission control

Congestion control

Scheduling

Power control

Task assignment

CRRM Components

UE / RAS Components Commands

CRRM Control Loop

Categorization of CRRM algorithms

- Close relationship to Load Sharing Algorithms
- Categories are:
 - System model
 - Transfer model
 - Information distribution model
 - Coordination model
 - Time horizon
 - Stability control
 - Adaptivity

CRRM – Manifold Options

- Information management (IM) and decision (D) model
 - Level A (RAS), Level B (RAT), Level C (Provider)
 - ► Network initiated (NI), Mobile initiated (MI)
 - Integration levels
 - ▶ High scale, medium scale, low scale
 - System structure
 - ► Centralized, hierarchical, decentralized
- Different time horizons
- Different amounts of information
 - Transferred
 - Usable

Level B Scenario Example – de/centralized NI-CRRM

Level B Scenario Example – centralized NI-CRRM

Level B Scenario Example – decentralized MI-CRRM

Low Scale Integration Level

Medium Scale Integration Level

High Scale Integration Level

UNIVERSITÄT

DUISBURG

Outline

- Motivation
- History and Terms
- Theory
- Systematic View
- Architectures
- Algorithms
- Model and Simulation Framework
- Summary

CRRM Functional Model

■ 3GPP: TR 25.891 ; TR 25.881 ; TR 22.934

Example Architectures

- A wide variety of architecture examples can be found in literature.
- Just two examples...
 - SNRM: Evaluate decisions before execution
 - MIRAI: Basic access network
- Advantages? Disadvantages?

Service and Network Resource Management (SNRM)

MIRAI Architecture for heterogeneous Networks

Outline

- Motivation
- History and Terms
- Theory
- Systematic View
- Architectures
- Algorithms
- Summary

Algorithms Overview

- Based on multiobjective optimization
- Optimal vs. Suboptimal
- Predictive vs. Non-predictive
- Influencing factors
 - Network load
 - ▶ Resource utilization
 - Service costs (revenue)
 - ► Service class (gold, best effort)
 - QoS (blocking, dropping, data rate, delay)
 - user satisfaction
 - Path loss (coverage)
 - Speed
 - Security
 - Energy consumption

CRRM Algorithm Flavors (1)

Mathematical optimization

- Linear programming
 - ▶ Set of cost functions
- Integer programming
 - Knapsack problem formulation
- Dynamic programming
 - ► Solve subproblems

Mathematical optimization: Example: Multiple Knapsack problem formulation (1)

- M = available cells; N = active sessions; $i \in M, j \in N$
- c = cell capacity; x = session
- p = profit/costs; w = resource consumption

Restrictions:

• Each session is unique: $\sum_{i=1}^{n} x_{ij} \le 1$

• Session is indivisible: $x_{ii} = \{0,1\}$

■ Task:

• Find a session distribution: $\sum w_j x_{ij} \le c_i$

• Which maximizes profit: $\sum_{i=1}^{m} \sum_{j=1}^{n} p_{j} x_{i}$ • Which minimizes costs:

Mathematical optimization: From MKP to Generalized Assignment Problem (GAP) (2)

- Problems in defining the profit
 - Fixed profit is comparable to prioritization
 - Dynamic profit (e.g. QoS level) depends on connection

$$\sum_{i=1}^{m} \sum_{j=1}^{n} p_{j} x_{ij} \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} x_{ij}$$

- Problems in finding an optimal distribution of sessions:
 - assignment restrictions / capacity regions
 - varying resource consumption

$$\sum_{j=1}^{n} w_j x_{ij} \le C_i \qquad \longrightarrow \qquad \sum_{j=1}^{n}$$

$$\sum_{j=1}^{n} w_{ij} x_{ij} \leq c_{ij}$$

- Exact solution is NP-complete -> Approximations
 - ► For MKP a PTAS exist but GAP is assumed to be APX-hard

Mathematical optimization: Example: Multiple Knapsack problem formulation (3)

Cell capacity definition

- Fixed: maximum throughput; maximum power
- Dynamic: Current throughput in relation to current overall resource consumption
 - ▶ Reflects current interference situation

Costs/ Profit/ Weight definition

- Very simple weight: data rate of session
- More suitable weights/costs per bandwidth unit (e.g. based on power or time slot consumption)
 - ► Can be estimated individually (speed, position...)
 - Problems with nonlinearities (e.g. WCDMA)
 - More information has to be transferred
- Profit as a function of user satisfaction...

CRRM Algorithm Flavors (2)

Policy based

- Thresholds or linear programming lead to decisions
- Based on
 - User satisfaction
 - Cell load
 - Path loss
 - Speed
 - General cost functions

Policy based: Example: Path Loss

Decision for intersystem handover is based on distance of UE to base station

Policy: If distance of UE is higher than R_c start intersystem handover to TDMA

CRRM Algorithm Flavors (3)

- Physic / Nature analogy models
- Force based
 - Attracting/repelling forces
 - cost functions for service sessions based on target cells
- Ecology based
 - Lotka-Volterra competition equations
 - Species compete for resources (growth rate)
 - ▶ Species (service), population (traffic), resource (user with coverage), carrying capacity (max. traffic volume of cell), birth (service session starts), death (service session ends)
- Genetic / evolutionary algorithms
 - inheritance, mutation, selection, recombination
 - Incremental approximate solution
 - Problem formulation based on Knapsack (connection, RAS, resource consumption) or set of cost functions

Physic / Nature analogy based: Example: Forces

The choice of the appropriate target cell is based on superposition of different forces to target cell k

CRRM Algorithm Flavors (4)

Game Theory

- Cooperative
 - Players choose the strategies based on consensus and external rules
 - ▶ Find coalition
 - ▶ Best payment/revenue
 - ▶ Networks form coalitions to handle resource request
- Noncooperative
 - Players make decisions independently
 - ► Find equilibrium
 - Best strategy
 - Networks admit connections to maximize own revenue
 - ▶ Intersystem handover handled via bargaining games

CRRM Algorithm Flavors (5)

"Artificial Intelligence" concepts

- Fuzzy Logic
 - Reasoning that is approximate rather than precise
 - degree of truth (load level in cell, RAT suitable for service, level of resource consumption...)
- Neural Networks
 - Adaptive system that changes its structure based on external or internal information
 - non-linear statistical data modeling
 - Find pattern and relationships
 - Set of influencing factors (speed, data rate, position,...)
 - Reinforcement learning based on achieved QoS

Artificial Intelligence concepts Example: Fuzzy-Neural Controller

; SALLENT, O.: A framework for JRRM with resource reservation and multiservice provisioning in heterogeneous networks. In: *Mobile Networks and Applications*, Volume 11 (2006), Nr. 6, pp. 825-846 R.; PÉREZ-ROMERO, J. ; AGUSTÍ, GIUPPONI, L.

Outline

- Motivation
- History and Terms
- Theory
- Systematic View
- Architectures
- Algorithms
- Summary

Summary

- CRRM Problem: Find matching for set of UE (service sessions) and set of available RAS
- **Actions:** Handover (intra/intersystem), adapt offered QoS, change RRM-properties
- Goal: Always best connected at minimal costs
- **Gains:** Trunking efficiency gain, Service assignment gain
- Solution: multiobjective optimization problem
- Many open research problems

End of Presentation

Thank you very much for your attention!

References for History, Theory and Systematic View

- GUSTAFSSON, Eva; JONSSON, Annika: Always best connected. In: *IEEE Wireless Communications*, Volume 10 (2003), Nr. 1, pp. 49-55
- MITOLA, Joseph; MAGUIRE, Gerald: Cognitive radio: making software radios more personal. In: IEEE Personal Communications, Volume 6 (1999), Nr. 4, pp. 13-18
- KLEINROCK Leonard: Queueing Systems Volume 1: Theory. 1. Aufl. New York: John Wiley and Sons, 1975
- FURUSKAR, A.; ZANDER, J.: Multiservice allocation for multiaccess wireless systems. In: IEEE Transactions on Wireless Communications, Volume 4 (2005), Nr. 1, pp. 174-184
- PEREZ-ROMERO, J.; SALLENT, O.; AGUSTI, R.; KARLSSON, P.; BARBARESI, A.; WANG, L.; CASADEVALL, F.; DOHLER, M.; GONZALEZ, H.; CABRAL-PINTO, F.: Common radio resource management: functional models and implementation requirements. In: IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2005), Berlin, Germany, 11.-14. September, 2005
- FALOWO, O. E.; CHAN, H. A.: Joint Call Admission Control Algorithms: Requirements, approaches, and design considerations. In: Elsevier Computer Communications, Volume 31 (2008), Nr. 6, pp. 1200-1217
- PILLEKEIT, A.; MÜLLER-CLOSTERMANN, B.: A Simulation Framework for the Evaluation of Scenarios and Algorithms for Common Radio Resource Management. In: 2nd International Conference on Simulation Tools and Techniques (SimuTools 2009), Rom, Italy, 2.-6. March, 2009

References for Architectures and Algorithms

- WU, G.; MIZUNO, M.; HAVINGA, P.J.M.: MIRAI Architecture for Heterogeneous Network. In: *IEEE Communications Magazine*, Volume 40 (2002), Nr. 2, pp. 126-134
- DEMESTICHAS, P.; PAPADOPOULOU, L.; STAVROULAKI, V.; THEOLOGOU, M.; VIVIER, G.; MARTINEZ, G.; GALLIANO, F.: Wireless beyond 3G: managing services and network resources. In: *IEEE Computer*, Volume 35 (2002), Nr. 8, pp. 80-82
- BLAU, I.; WUNDER, G.; KARLA, I.; SIEGLE, R.: Cost based Heterogeneous Access Management in Multi-Service, Multi-System Scenarios. In: *IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2007)*, Athen, Greece, 3.-7. September, 2007
- WANG, L.; AGHVAMI, H.; NAFISI, N.; PÉREZ-ROMERO, J.; SALLENT, O.; AGUSTÍ, R.: Coverage-based Common Radio Resource Management in heterogeneous CDMA/TDMA. In: Cellular Systems Conference, 2nd International Workshop on eSafety and Convergence of Heterogeneous Wireless Networks, New Orleans, Louisiana (USA), 11.-13. April, 2007
- PILLEKEIT, A.; DERAKHSHAN, F; JUGL, E.; MITSCHELE-THIEL, A.: Force-based Load Balancing in Co-located UMTS/GSM Networks. In: 60th IEEE Vehicular Technology Conf. (VTC 2004), Los Angeles, USA, 26.-29. September, 2004
- GIUPPONI, L.; AGUSTÍ, R.; PÉREZ-ROMERO, J.; SALLENT, O.: A framework for JRRM with resource reservation and multiservice provisioning in heterogeneous networks. In: *Mobile Networks and Applications*, Volume 11 (2006), Nr. 6, pp. 825-846