University of Duisburg - Essen

Influence of Information Aging in Self Organizing Joint Radio Resource Management Systems

Andreas Pillekeit

Research Group Systems Modelling, ICB, University of Duisburg-Essen Andreas.Pillekeit@icb.uni-due.de

Outline

- Motivation
- Scenario description
- Results
- Conclusion

Outline

- Motivation
- Scenario description
- Results
- Conclusion

UE in a Changing Environment – Reason for JRRM

JRRM Control Loop

Causes for Information Aging

■Information management

- Measurement times
- Update intervals
- Information transfer times

Decision management

- Evaluation times
- Execution times
- Command transfer times

Different JRRM System Boundary Levels

Commands

Different JRRM Integration Levels

Tasks

Admission

control

Initial RAT selection

Intersystem Handover

Intrasystem Handover

Power

Task assignment

Impact of Information Aging

- Depends on speed and burstiness of system state change process
- Observed/controlled parameter
 - General time horizon (ms vs. days)
- User behavior
 - Service demand (active sessions, service type)
 - Mobility (signal quality, interference, active sessions)
- System structure
 - cell layout (signal quality, interference, active sessions)

Subject of this Investigation

- Influence of aged information on the quality of the JRRM solution.
 - Sensitivity of JRRM algorithms
 - Different speed and burstiness of system state change process
- Compare cost of system observation and control to algorithm performance
 - Transfer times (IM)
 - Start load threshold (ST)
 - Target load threshold (TT)
 - Minimal load difference (MLD)

Outline

- Motivation
- Scenario description
- Results
- Conclusion

Scenario Layout (I)

■ **Network initiated**, JRRM multiple RAT, low scale integration, decentralized decision

Scenario Layout (II)

■ Mobile initiated, JRRM multiple RAT, low scale integration, decentralized decision

Scenario Layout (III)

Seven co-located cells per RAS (diameter 1km)

- Good / moderate signal reception areas
- CS / PS channel
- CS connections preemptPS connections in GSM
- PS channel is shared in GPRS and is dedicated in UMTS

Scenario Service Parameters

- Conversational real time service (CS) and non real time webservice (PS)
- Different speeds of service state change process
 - Variation of service duration (R) and arrival rate (constant mean utilization)
 - Variation of moving speed (v) 1 m/s to 15 m/s
- Different burstiness of service state change process
 - Interarrival time distribution: $c_A = 1$ (M) and $c_A = 2$ (H₂)

CS – conversational	PS – web-service
 10 to 40 calls/h per user (exp) 300 user 3 min to 0.75 min call duration (exp) 150 Erlang 12,2 kbit/s 	 24 sessions/h per user 200 user Mean session size 60 kbyte (geo) Mean page size 12 kbyte (geo) Mean packet length 900 byte (const) Reading time 30 s (exp) 12-128 kbit/s (exp)

Outline

- Motivation
- Scenario description
- Results
- Conclusion

Results for Deactivated JRRM

Scenarios No JRRM	Blocking in % [±95%]		Dropping in % [±95%]		E[Datarate] in kbit/s	
	PS	CS	PS	CS	PS	
v=1, only PS, M	0.01 [0.01]	-	0.28 [0.05]	-	99,977 [285]	
v=1, R=3, M	0.93 [0.06]	10.3 [0.8]	23.6 [0.7]	2.99 [0.22]	92,692 [409]	
v=1, R=0.75, M	1.13 [0.06]	13.8 [0.4]	28.5 [0.7]	0.85 [0.06]	90,612 [346]	
v=15, R=3, M	0.86 [0.05]	4.63 [0.26]	21.6 [0.4]	28.3 [0.98]	85,904 [591]	
v=15, R=0.75, M	1.17 [0.05]	9.38 [0.30]	29.0 [0.6]	12.6 [0.31]	82,952 [534]	
v=1, R=0.75, H ₂	2.28 [0.15]	15.5 [1.0]	26.1 [0.9]	0.79 [0.07]	88,460 [488]	
v=15, R=0.75, H ₂	1.88 [0.11]	11.0 [0.3]	28.3 [1.0]	12.1 [0.49]	80,724 [926]	

- Shared channel (EGPRS) has enough capacity for user demand
- EGPRS is impaired by CS background traffic
 - Conversational services are displacing web services
- Higher system dynamics lead to worse performance values
 - Interdependency of utilization, blocking, dropping and movement

Transient Simulation Results: Mean CS Load in GSM

- \blacksquare Higher moving speeds (\mathbf{v}) lead to lower mean utilizations (no HO reserve)
- Higher moving speeds decrease the ability to maintain the target load
 - UE already blocked or dropped; Vertical handover pointing to unavailable cells
- Faster JRRM (**IM**) is better in maintaining the target load

Transient Simulation Results: Mean CS Load in GSM

- Fast arrival and departure process (R) leads to a worse JRRM performance
 - It is more difficult to maintain lower target loads
- Time delay of IM has a bigger influence
 - commands for already terminated sessions

Transient Simulation Results: Number of Vertical HO

- ST, TT, R, v, (IM): influence on number of VHO
- High moving speeds (v): some UE already blocked or dropped; lower cell utilization
- ST, TT, IM, (R): influence on time of execution delayed reaction

Simulation Results: PDF of PPHO (I)

- R and IM have the biggest influence on the shape of pdf for Ping Pong Handover (PPHO)
- R has a big and IM a moderate influence on the mean time between PPHO
- Higher ST/TT values reduce the mean number of PPHO
- H₂ arrival distribution reduces the mean number of PPHO and increases the mean time between PPHO
- The min load difference (MLD) has a slight effect on the mean number of PPHO

Simulation Results: PDF of PPHO (II)

Outline

- Motivation
- Scenario description
- Results
- Conclusion

Conclusion

- More up-to-date system state information lead to a better QoS but cause higher costs
 - Measurement (ST, TT, IM, MLD)
 - Command transfer and execution
 - Ping-pong-handover
- Less up-to-date system state information lead to increased costs for session handling issues (blocking, dropping)
- Highest impact: service arrival/duration and velocity
 - Distribution of arrival process has only a small effect on costs of IM
 - Nevertheless achieved QoS is different
- JRRM algorithms need to adapt their response times to the dynamic of the controlled processes
 - Problems with direct control of sessions if IM is slow

End of Presentation

Thank you very much for your attention!

E[Datarate] in kbit/s

PS

99,264 [335]

97,645 [287]

93,980 [275]

95,668 [265]

95,918 [381]

99,195 [265]

96,389 [442]

93,761 [414]

87,571 [478]

87,425 [581]

E[Costs] of RAS

meas.

RAS

2,074,256 [9,037]

877,473 [6,793]

853,035 [5,593]

996,900 [6,032]

2,146,827 [8,762]

2,163,771 [8,787]

2,146,669 [13,422]

2,130,221 [14,775]

Institute for Computer Science

and Business Information Systems Research Group Systems Modeling

2,096,565 [8,877]

882,229 [6,420]

0.00 [0.01]

0.04 [0.02]

0.05 [0.01]

0.02 [0.01]

0.02 [0.01]

0.00 [0.00]

0.01 [0.01]

0.04 [0.01]

2.94 [0.14]

19.5 [0.8]

E[Costs] per

session

CS

172.0 [4.16]

210.2 [3.58]

53.23 [0.57]

50.05 [0.43]

47.36 [0.56]

39.20 [0.48]

39.17 [1.03]

47.18 [0.91]

49.45 [0.55]

214.5 [3.98]

Prob. of VHO

%

CS

52.59 [1.07]

39.93 [1.14]

35.19 [0.58]

38.93 [0.62]

42.95 [0.63]

53.55 [0.67]

53.25 [1.76]

42.50 [1.03]

37.80 [0.51]

16.28 [0.82]

0.01 [0.01] | 0.01 [0.01] | 0.69 [0.10]

0.04 [0.01] | 0.14 [0.05] | 2.36 [0.25]

0.24 [0.03] | 1.03 [0.08] | 8.87 [0.31]

0.10 [0.02] | 0.36 [0.05] | 4.84 [0.26]

0.14 [0.02] | 0.75 [0.10] | 6.21 [0.43]

0.03 [0.01] | 0.14 [0.03] | 1.45 [0.17]

0.07 [0.01] | 0.25 [0,04] | 2.33 [0.22]

0.32 [0.04] | 1.17 [0.12] | 7.15 [0.54]

0.53 [0.04] [2.22 [0.12] 16.1 [0.4]

0.73 [0.05] 3.69 [0.25] 18.9 [0.4]

PS

591 [6]

591 [6]

577 [5]

583 [5]

582 [5]

588 [6]

589 [9]

582 [9]

566 [6]

559 [5]

Overall Results: MKP (PS only EGPRS)					
Scenarios	Blocking in % [±95%]		Dropping in %		
	PS	CS	PS	CS	

IM: 10s, ST 20%, TT 40%, v=1m/s, R=3min

IM: 10s, ST 50%, TT 60%, v=1m/s, R=3min

IM: 10s, ST 50%, TT 60%, v=1m/s, R=0.75min

IM: 10s, ST 20%, TT 40%, v=1m/s, R=0.75min

IM: 0.01s, ST 50%, TT 60%, v=1m/s, R=0.75min

IM: 0.01s, ST 20%, TT 40%, v=1m/s, R=0.75min

IM: 0.01s, ST 20%, TT 40%, v=1m/s, R=0.75min, H₂

Scenarios

IM: 10s, ST 20%, TT 40%, v=1m/s, R=0.75min, H₂

IM: 0.01s, ST 20%, TT 40%, v=15m/s, R=0.75min

IM: 10s, ST 50%, TT 60%, v=15m/s, R=3min

IM: 10s, ST 20%, TT 40%, v=1m/s, R=3min

IM: 10s, ST 50%, TT 60%, v=1m/s, R=3min

IM: 10s, ST 50%, TT 60%, v=1m/s, R=0.75min

IM: 10s, ST 20%, TT 40%, v=1m/s, R=0.75min

IM: 0.01s, ST 50%, TT 60%, v=1m/s, R=0.75min

IM: 0.01s, ST 20%, TT 40%, v=1m/s, R=0.75min

IM: 0.01s, ST 20%, TT 40%, v=1m/s, R=0.75min, H₂

IM: 10s, ST 20%, TT 40%, v=1m/s, R=0.75min, H₂

IM: 0.01s, ST 20%, TT 40%, v=15m/s, R=0.75min

IM: 10s, ST 50%, TT 60%, v=15m/s, R=3min

DUISBURG ESSEN

H₂ vs. M - Distribution

Simulation Framework – Overview

Model framework

- Five components (ENV, UE, RAS, JRRM-IM, JRRM-D)
- Supports a wide variety of JRRM scenarios (JRRM structures & integration levels)
- Supports JRRM control loop and cost-benefit analysis

Simulator HEKATE

- Discrete event simulator based on OMNeT++
- Hybrid simulation model
 - ► Flow level of connections is modeled via discrete event simulation
 - Packet arrival/service process and resource consumption/utilization is considered via analytical models

