## UNIVERSITÄT DUISBURG ESSEN

# A Simulation Framework for Common Radio Resource Management 🗡



Andreas Pillekeit University of Duisburg-Essen Institute for Computer Science and Business Information Systems Research Group Systems Modeling Prof. Dr. Müller-Clostermann

Schützenbahn 70, D-45117 Essen, Germany

Phone: +49 (0)201 / 183 - 4558, Fax: +49 (0)201 / 183 - 4573 E-Mail: Andreas.Pillekeit@icb.uni-due.de

### Motivation

### Different coexisting Radio Access Technologies

- **WGAN** Wireless *Global* Area Network
  - Inmarsat (492 kbit/s), Thuraya (60 144 kbit/s), Iridium (10 kbit/s), ASTRA2Connect (2 Mbit/s)
- **WWAN** Wireless *Wide* Area Network
  - UMTS-HSDPA (14,4 Mbit/s) / LTE (326 Mbit/s 1 Gbit/s), GSM-GPRS (171,2 kbit/s) /E-GPRS (473,6 kbit/s - 1 Mbit/s), WiMax (109 Mbit/s - 1 Gbit/s), DVB-H (15 Mbit/s)
- WLAN Wireless *Local* Area Network
  - 802.11b,n (11 600 Mbit/s), HIPERLAN2 (54 MBit/s)
- WPAN Wireless <u>Personal</u> Area Network
  - Bluetooth 3 (2,2 480 Mbit/s), IrDA (16 MBit/s), DECT (552 kbit/s), WirelessHD (25 Gbit/s), W-USB (480 Mbit/s)

### Set of User Equipment

- QoS demand
- Resource consumption

Core

Network

QoS

Broker

- Supported RAT/Provider
- Available RAS ..

Systematic View

**Common RAT Architecture** 

**Radio Access** 

Network

■ Main tasks of CRRM are

Suitable protocols and

execution are needed

**Sharing Algorithms** 

■ Close relationship to Load

information distribution -,

stability control, adaptivity

**Decision** 

**Information Management and** 

communication connections for

Categorization: system -, transfer -,

coordination model, time horizon,

measurements and command



UE<sub>k</sub>

**Assumption:** 

RAS features

**Networks** 

Core Network supports

RAS is bottleneck due to

unreliable wireless links

**CRRM Control Loop** 

Start — Measurement

**Distribution of** 

Information

- Availabe Ressources
- UE<sub>1</sub> Coverage Matching

Decision

QoS offered

RAT/Provider ...

### Aim: optimal distribution of services (UE) to available radio access systems

Satisfied users, minimal costs

Set of Radio Access Systems

- Possible actions to meet this aim: Handover (intra-/intersystem), adapt QoS, change RRM-properties (e.g. allocate additional
- Complex task due to dynamics in the system and many influencing factors
- Heterogeneous wireless systems and user equipments

### **Different CRRM Levels**



# ■ Each RAS has an autonomous local radio

- Residing either close to the wireless transceiver or partly in the CN.
- The RAS can be a satellite in case of a WGAN, a cell layer in case of a cellular WWAN system like UMTS, or even a single cell in case of a WLAN system or other UE in case of ad-hoc networks.
- **■** Providers usually support more than one Radio Access Technology
- f.i. GERAN together with UTRAN
- Providers can have roaming agreements

## Modeling and Simulation

### **Component Connectivity in Model Framework**



### Scenario Example: UMTS/GSM (NIHO)





### Scenario Example: UMTS/GSM (MIHO) decentralized IM & D



#### **Hybrid Simulation Concept**

Class II hybrid model (Sargent, 1994)



**Grid/Layer Structure of Environment** 



### **Service Lifetime and Update Events**

■ Update events for services (in one cell of a RAS)



## What did we achieve? What is the work ahead?



with ISHO Ratio of normally ended to overall created calls in a UMTS/GSM scenario





- Covering a wide variety of scenarios
- Starting point for development/evaluation of CRRM algorithms CRRM entities have to measure and fetch information
- Possible conflicts in CRRM hierarchies
- Cost-Benefit analysis is possible Event counters and action related costs
- Influence of time is considered
  - Refresh period of information
- Hybrid simulation model

Transport time delays

- Fast simulation
- Convenient integration of new RAT / Service models

### Suitability assessment of different CRRM algorithms for diverse CRRM scenarios Multi-criteria optimization (game theory, theory of

Work Ahead! agent based – algorithms for knapsack problems or

- load balancing) Stability against information aging
- Robustness against erroneous information
- Suitability of decentralized/ hierarchical/ centralized information or decision management

evolution, fuzzy-neural controller, policy based, multi-

- ▶ Influence of mobility and service dynamics
- Integration of analytical models for UMTS/HSDPA-HSUPA and IEEE 802.11 networks